On the normalized Shannon capacity of a union

PETER KEEVASH ${ }^{\dagger}$ and EOIN LONG
Mathematical Institute, University of Oxford, Oxford, UK.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.
keevash@maths.ox.ac.uk and eoinlong@post.tau.ac.il

Abstract

Let $G_{1} \times G_{2}$ denote the strong product of graphs G_{1} and G_{2}, i.e. the graph on $V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ in which $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if for each $i=1,2$ we have $u_{i}=v_{i}$ or $u_{i} v_{i} \in E\left(G_{i}\right)$. The Shannon capacity of G is $c(G)=\lim _{n \rightarrow \infty} \alpha\left(G^{n}\right)^{1 / n}$, where G^{n} denotes the n-fold strong power of G, and $\alpha(H)$ denotes the independence number of a graph H. The normalized Shannon capacity of G is $C(G)=\frac{\log c(G)}{\log |V(G)|}$. Alon [1] asked whether for every $\epsilon>0$ there are graphs G and G^{\prime} satisfying $C(G), C\left(G^{\prime}\right)<\epsilon$ but with $C\left(G+G^{\prime}\right)>1-\epsilon$. We show that the answer is no.

MSC code: 05C35 (primary) 94A05 (secondary)

Despite much impressive work (e.g. [1], [3], [4], [5], [7]) since the introduction of the Shannon capacity in [8], many natural questions regarding this parameter remain widely open (see [2], [6] for surveys). Let $G_{1}+G_{2}$ denote the disjoint union of the graphs G_{1} and G_{2}. It is easy to see that $c\left(G_{1}+G_{2}\right) \geq c\left(G_{1}\right)+c\left(G_{2}\right)$. Shannon [8] conjectured that $c\left(G_{1}+G_{2}\right)=c\left(G_{1}\right)+c\left(G_{2}\right)$, but this was disproved in a strong form by Alon [1] who showed that there are n-vertex graphs G_{1}, G_{2} with $c\left(G_{i}\right)<e^{c \sqrt{\log n \log \log n}}$ but $c\left(G_{1}+G_{2}\right) \geq \sqrt{n}$. In terms of the normalized Shannon capacity, this implies that for any $\epsilon>0$, there exist graphs G_{1}, G_{2} with $C\left(G_{i}\right)<\epsilon$ but $C\left(G_{1}+G_{2}\right)>1 / 2-\epsilon$. Alon [1] asked whether ' $1 / 2$ ' can be changed to ' 1 ' here. In this short note we will give a negative answer to this question. In fact, the following result implies that ' $1 / 2$ ' is tight.

Theorem 0.1. If $C\left(G_{1}\right) \leq \epsilon$ and $C\left(G_{2}\right) \leq \epsilon$ then

$$
C\left(G_{1}+G_{2}\right) \leq \frac{1+\epsilon}{2}+\frac{1-\epsilon}{2 \log _{2}\left(\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|\right)}
$$

Proof. Let $N_{i}=\left|V\left(G_{i}\right)\right|$ for $i=1,2$. Fix a maximum size independent set I in $\left(G_{1}+G_{2}\right)^{n}$ for some $n \in \mathbb{N}$. We write $|I|=\sum_{S \subset[n]}\left|I_{S}\right|$, where $I_{S}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in I: x_{i} \in\right.$ $\left.V\left(G_{1}\right) \Leftrightarrow i \in S\right\}$.

To bound $\left|I_{S}\right|$, we may suppose that $S=[m]$ for some $0 \leq m \leq n$. Then I_{S} is an

[^0]independent set in $G_{1}^{m} \times G_{2}^{n-m}$. As $C\left(G_{1}\right) \leq \epsilon$, by supermultiplicativity $\alpha\left(G_{1}^{m}\right) \leq N_{1}^{\epsilon m}$; similarly, $\alpha\left(G_{2}^{n-m}\right) \leq N_{2}^{\epsilon(n-m)}$. For any $x \in V\left(G_{1}\right)^{m}$, the set of $y \in V\left(G_{2}\right)^{n-m}$ such that $(x, y) \in I_{S}$ is independent in G_{2}^{n-m}, so $\left|I_{S}\right| \leq N_{1}^{m} N_{2}^{\epsilon(n-m)}$. Similarly, $\left|I_{S}\right| \leq N_{1}^{\epsilon m} N_{2}^{n-m}$.

We multiply these bounds: $\left|I_{S}\right|^{2} \leq\left(N_{1}^{m} N_{2}^{n-m}\right)^{1+\epsilon}$. Writing $\gamma=\frac{N_{1}}{N_{1}+N_{2}}$, we have

$$
\begin{aligned}
\alpha\left(\left(G_{1}+G_{2}\right)^{n}\right)=|I| & =\sum_{S \subset[n]}\left|I_{S}\right| \leq \sum_{m=0}^{n}\binom{n}{m}\left(N_{1}^{(1+\epsilon) / 2}\right)^{m}\left(N_{2}^{(1+\epsilon) / 2}\right)^{n-m} \\
& =\left(N_{1}^{(1+\epsilon) / 2}+N_{2}^{(1+\epsilon) / 2}\right)^{n} \\
& =\left(\gamma^{(1+\epsilon) / 2}+(1-\gamma)^{(1+\epsilon) / 2}\right)^{n}\left(N_{1}+N_{2}\right)^{(1+\epsilon) n / 2} \\
& \leq 2^{(1-\epsilon) n / 2}\left(N_{1}+N_{2}\right)^{(1+\epsilon) n / 2}
\end{aligned}
$$

as $\gamma^{b}+(1-\gamma)^{b}$ is maximized at $\gamma=1 / 2$ for $0<b<1$ and $0 \leq \gamma \leq 1$. Therefore

$$
C\left(G_{1}+G_{2}\right)=\lim _{n \rightarrow \infty} \frac{\log \alpha\left(\left(G_{1}+G_{2}\right)^{n}\right)}{n \log \left(N_{1}+N_{2}\right)} \leq \frac{1+\epsilon}{2}+\frac{1-\epsilon}{2 \log _{2}\left(N_{1}+N_{2}\right)}
$$

References

[1] N. Alon, The Shannon capacity of a union, Combinatorica 18 (1998), 301-310.
[2] N. Alon, Graph powers, Contemporary combinatorics, 1128, Bolyai Soc. Math. Stud., 10, János Bolyai Math. Soc., Budapest, 2002.
[3] N. Alon and E. Lubetzky, The Shannon capacity of a graph and the independence numbers of its powers, IEEE Trans. Inform. Theory 52 (2006), 2172-2176.
[4] N. Alon and A. Orlitsky, Repeated communication and Ramsey graphs, IEEE Trans. Inform. Theory 41 (1995), 1276-1289.
[5] W. Haemers, On some problems of Lovász concerning the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), 231-232.
[6] J. Körner and A. Orlitsky, Zero-Error Information Theory, IEEE Trans. Inform. Theory 44 (1998), 2207-2229.
[7] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), 1-7.
[8] C. E. Shannon, The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory $\mathbf{2}$ (1956), 8-19.

[^0]: \dagger Research supported in part by ERC Consolidator Grant 647678.

