$\label{eq:combinatorics, Probability and Computing (2016) 00, 000-000. \end{combined} \end{combined} \end{combined} \end{combined} 2016 \end{combined} \en$

On the normalized Shannon capacity of a union

PETER KEEVASH[†] and EOIN LONG

Mathematical Institute, University of Oxford, Oxford, UK. School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel. keevash@maths.ox.ac.uk and eoinlong@post.tau.ac.il

Let $G_1 \times G_2$ denote the strong product of graphs G_1 and G_2 , i.e. the graph on $V(G_1) \times V(G_2)$ in which (u_1, u_2) and (v_1, v_2) are adjacent if for each i = 1, 2 we have $u_i = v_i$ or $u_i v_i \in E(G_i)$. The Shannon capacity of G is $c(G) = \lim_{n \to \infty} \alpha(G^n)^{1/n}$, where G^n denotes the *n*-fold strong power of G, and $\alpha(H)$ denotes the independence number of a graph H. The normalized Shannon capacity of G is $C(G) = \frac{\log c(G)}{\log |V(G)|}$. Alon [1] asked whether for every $\epsilon > 0$ there are graphs G and G' satisfying $C(G), C(G') < \epsilon$ but with $C(G + G') > 1 - \epsilon$. We show that the answer is no. MSC code: 05C35 (primary) 94A05 (secondary)

Despite much impressive work (e.g. [1], [3], [4], [5], [7]) since the introduction of the Shannon capacity in [8], many natural questions regarding this parameter remain widely open (see [2], [6] for surveys). Let $G_1 + G_2$ denote the disjoint union of the graphs G_1 and G_2 . It is easy to see that $c(G_1 + G_2) \ge c(G_1) + c(G_2)$. Shannon [8] conjectured that $c(G_1 + G_2) = c(G_1) + c(G_2)$, but this was disproved in a strong form by Alon [1] who showed that there are *n*-vertex graphs G_1, G_2 with $c(G_i) < e^{c\sqrt{\log n \log \log n}}$ but $c(G_1 + G_2) \ge \sqrt{n}$. In terms of the normalized Shannon capacity, this implies that for any $\epsilon > 0$, there exist graphs G_1, G_2 with $C(G_i) < \epsilon$ but $C(G_1 + G_2) > 1/2 - \epsilon$. Alon [1] asked whether '1/2' can be changed to '1' here. In this short note we will give a negative answer to this question. In fact, the following result implies that '1/2' is tight.

Theorem 0.1. If $C(G_1) \leq \epsilon$ and $C(G_2) \leq \epsilon$ then

$$C(G_1 + G_2) \le \frac{1 + \epsilon}{2} + \frac{1 - \epsilon}{2\log_2(|V(G_1)| + |V(G_2)|)}.$$

Proof. Let $N_i = |V(G_i)|$ for i = 1, 2. Fix a maximum size independent set I in $(G_1+G_2)^n$ for some $n \in \mathbb{N}$. We write $|I| = \sum_{S \subset [n]} |I_S|$, where $I_S = \{x = (x_1, \ldots, x_n) \in I : x_i \in V(G_1) \Leftrightarrow i \in S\}$.

To bound $|I_S|$, we may suppose that S = [m] for some $0 \le m \le n$. Then I_S is an

[†] Research supported in part by ERC Consolidator Grant 647678.

independent set in $G_1^m \times G_2^{n-m}$. As $C(G_1) \leq \epsilon$, by supermultiplicativity $\alpha(G_1^m) \leq N_1^{\epsilon m}$; similarly, $\alpha(G_2^{n-m}) \leq N_2^{\epsilon(n-m)}$. For any $x \in V(G_1)^m$, the set of $y \in V(G_2)^{n-m}$ such that $(x, y) \in I_S$ is independent in G_2^{n-m} , so $|I_S| \leq N_1^m N_2^{\epsilon(n-m)}$. Similarly, $|I_S| \leq N_1^{\epsilon m} N_2^{n-m}$. We multiply these bounds: $|I_S|^2 \leq (N_1^m N_2^{n-m})^{1+\epsilon}$. Writing $\gamma = \frac{N_1}{N_1 + N_2}$, we have

$$\begin{aligned} \alpha((G_1 + G_2)^n) &= |I| &= \sum_{S \subset [n]} |I_S| \le \sum_{m=0}^n \binom{n}{m} \left(N_1^{(1+\epsilon)/2}\right)^m \left(N_2^{(1+\epsilon)/2}\right)^{n-m} \\ &= \left(N_1^{(1+\epsilon)/2} + N_2^{(1+\epsilon)/2}\right)^n \\ &= \left(\gamma^{(1+\epsilon)/2} + (1-\gamma)^{(1+\epsilon)/2}\right)^n (N_1 + N_2)^{(1+\epsilon)n/2} \\ &\le 2^{(1-\epsilon)n/2} (N_1 + N_2)^{(1+\epsilon)n/2}, \end{aligned}$$

as $\gamma^b + (1 - \gamma)^b$ is maximized at $\gamma = 1/2$ for 0 < b < 1 and $0 \le \gamma \le 1$. Therefore

$$C(G_1 + G_2) = \lim_{n \to \infty} \frac{\log \alpha((G_1 + G_2)^n)}{n \log (N_1 + N_2)} \le \frac{1 + \epsilon}{2} + \frac{1 - \epsilon}{2 \log_2(N_1 + N_2)}$$

References

- [1] N. Alon, The Shannon capacity of a union, Combinatorica 18 (1998), 301–310.
- [2] N. Alon, Graph powers, Contemporary combinatorics, 1128, Bolyai Soc. Math. Stud., 10, János Bolyai Math. Soc., Budapest, 2002.
- [3] N. Alon and E. Lubetzky, The Shannon capacity of a graph and the independence numbers of its powers, *IEEE Trans. Inform. Theory* **52** (2006), 2172–2176.
- N. Alon and A. Orlitsky, Repeated communication and Ramsey graphs, *IEEE Trans. In*form. Theory 41 (1995), 1276–1289.
- [5] W. Haemers, On some problems of Lovász concerning the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* 25 (1979), 231–232.
- [6] J. Körner and A. Orlitsky, Zero-Error Information Theory, *IEEE Trans. Inform. Theory* 44 (1998), 2207–2229.
- [7] L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* 25 (1979), 1–7.
- [8] C. E. Shannon, The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory 2 (1956), 8–19.